

Unser Ziel ist es, Ihr Wissen und Ihr
Know-How durch überzeugende und
qualifizierte Weiterbildungen zu erwei-
tern und Sie so in Ihrer täglichen prakti-
schen Arbeit effektiv zu unterstützen.

Software-Testing

Integration testing
Autor: Hans Schäfer

Integration testing is necessary to verify interfaces. These can be on
any level: components, modules, subsystems and systems. Interfaces
must be verified because they may be implemented wrong. Most
problematic is interpersonal communication failure if different peo-
ple implement the interfacing parts. But even the same person im-
plementing two components at different times may introduce prob-
lems because of human failure. The risk for problems increases
mostly with the organizatorial distance between people implement-
ing the parts. Other factors are complexity, time pressure, bad
processes, etc.
Integration testing is concerned about the correct working of the
interface.
This means the two parts must understand the data flowing over the
interface in the same, or at least a compatible, way.
Another concern is consistency between the parts, i.e. of both parts
work in the same way, as seen from the outside. Any outside user of
the aggregate should not need to know what is done where: The
aggregate should look like a new unit.
Input is given from the outside of both components to be integrated.
The output is also observed at the outside. In principle, the inter-
face between the units is not observable nor can it be manipulated.
However, test equipment may be used to insert chosen values and
monitors may be used to observe what is actually happening at the
interface. Such insertion and observations may partly be done
(re)using module test environment. Otherwise special monitors,
protocol analyzers and insertion software must be bought or de-
signed. Testers should try to be aware of this early and require test-
ability (access points) to be built in.
In principle, integration test should be concerned about interfaces
only.
Thus we need a description of all internal interfaces of the system,
as well as their details. This information should be contained in an
overall design or system architecture.

However, it is often worse in practice, as this information is not
always available in the form of a design or architecture.
The list below is thus meant as a checklist for where to look for in
order to get interface information.

• Subsystem definitions
• Sequence- and collaboration charts
• APIs
• Communication protocols
• Files and their formats

Unser Ziel ist es, Ihr Wissen und Ihr
Know-How durch überzeugende und
qualifizierte Weiterbildungen zu erwei-
tern und Sie so in Ihrer täglichen prakti-
schen Arbeit effektiv zu unterstützen.

• Call-pairs, argument lists
• Event lists
• Use and flow of global data (init, write, read, search, change,
delete)
• Interaction online - batch - online
• Consistency between interfacing parts
• Synchronization of parallel processes and transactions, especially
queue handling.
• Multitasking: capacity of shared ressources (place and speed)
• Handling of failure in other components and recovery
• Special cases at interfaces (not existing data, bad data, empty
files, network down, etc.)
• Port assignments and handling
• Internal security rules

The information needed is the syntax and semantics, i.e. WHAT is
flowing over the interface and HOW is its meaning. The receiving
side of any interface must understand both correctly.

© Hans Schäfer, Oktober 2006

